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ABSTRACT 

ICT based learning, the inter relationship of various 

probability distributions can be studied viz. shape, 

location and scale parameters through visual 

diagrammatic methods.  In this paper we have 

discussed the approximation of Poisson to Normal 

probability distribution. 

1. INTRODUCTION 

Information and Communication 

Technologies (ICT) is becoming increasingly the 

necessary integrated information platform in 

teaching and learning processes. Implementing ICT 

can bring benefits to learners, at the same time it 

provides a broad view of the some of the complex 

concepts. ICTs are making dynamic changes in 

class room environment. ICTs provide both 

students and teachers with more productive 

learning opportunities to needs of the society. ICTs 

greatly facilitate the acquisition and absorption of 

knowledge in the interested field. 

Task: Students of statistics should learn discrete 

and continuous probability distributions in 

probability theory. Theoretically the students 

should learn to go to great lengths of derivations 

relating to the distributions and their 

interrelationships. Each distribution has its own 

unique behavioral pattern and characteristics. Of 

the all existing distributions Normal Distribution 

plays a very important role in statistical theory. 

 

2.  NORMAL DISTRIBUTION 

 

The normal distribution is the most 

important and also widely used distribution in 

statistics. The Normal distribution is also the core 

of the space of all observable processes. This 

distribution often provides a reasonable 

approximation to variety of data. It is sometimes 

called the "bell curve," although the tonal qualities 

of such a bell would be less than pleasing. It is also 

called the "Gaussian curve" after the mathematician 

Karl Friedrich Gauss. 

The density of the normal distribution is  

 

 The parameters μ and σ are the mean and standard 

deviation, respectively, and define the normal 

distribution. The symbol e is the base of the natural 

logarithm and π is the constant pi.  

3. DIAGRAM OF DISTRIBUTION 

     RELATIONSHIPS 

Probability distributions have surprising 

number inter-connections. A dashed line in the 

chart below indicates an approximate (limit) 

relationship between two distribution families. A 

solid line indicates an exact relationship: special 

case, sum, or transformation. 
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Fig. 1 Inter relationship of various probability 

distributions with Normal  

4. PARAMETERIZATIONS 

The precise relationships between 

distributions depend on parameterization. The 

relationships detailed below depend on the 

following parameterizations for the PDFs.  

Let C(n, k) denote the binomial coefficient(n, k) 

and  

B(a, b) = Γ(a) Γ(b) / Γ(a + b). 

Geometric: f(x) = p (1-p)x for non-negative integers 

x. 

Discrete uniform: f(x) = 1/n for x = 1, 2, ..., n. 

Negative binomial: f(x) = C(r + x - 1, x) pr(1-p)x 

for non-negative integers x.  

Beta binomial: f(x) = C(n, x) B(α + x, n + β - x) / 

B(α, β) for x = 0, 1, ..., n. 

Hypergeometric: f(x) = C(M, x) C(N-M, K - x) / 

C(N, K) for x = 0, 1, ..., N. 

Poisson: f(x) = exp(-λ) λx/ x! for non-negative 

integers x. The parameter λ is both the mean and 

the variance. 

Binomial: f(x) = C(n, x) px(1 - p)n-x for x = 0, 1, ..., 

n. 

Bernoulli: f(x) = px(1 - p)1-x where x = 0 or 1. 

Lognormal: f(x) = (2πσ2)-1/2 exp( -(log(x) - μ)2/ 2σ2) 

/ x for positive x. Note that μ and σ2 are not the 

mean and variance of the distribution. 

Normal: f(x) = (2π σ2)-1/2 exp( - ½((x - μ)/σ)2 ) for 

all x. 

Beta: f(x) = Γ(α + β) xα-1(1 - x)β-1 / (Γ(α) Γ(β)) for 0 

≤ x ≤ 1. 

Standard normal: f(x) = (2π)-1/2 exp( -x2/2) for all 

x. 

Chi-squared: f(x) = x-ν/2-1 exp(-x/2) / Γ(ν/2) 2ν/2 for 

positive x. The parameter ν is called the degrees of 

freedom. 

Gamma: f(x) = β-α xα-1 exp(-x/β) / Γ(α) for positive 

x. The parameter α is called the shape and β is the 

scale. 

Uniform: f(x) = 1 for 0 ≤ x ≤ 1. 

Cauchy: f(x) = σ/(π( (x - μ)2 + σ2) ) for all x. Note 

that μ and σ are location and scale parameters. The 

Cauchy distribution has no mean or variance. 

Snedecor F: f(x) is proportional to x(ν
1
 - 2)/2 / (1 + 

(ν1/ν2) x)(ν
1 + ν2

)/2 for positive x. 

Exponential: f(x) = exp(-x/μ)/μ for positive x. The 

parameter μ is the mean. 

Student t: f(x) is proportional to (1 + (x2/ν))-(ν + 1)/2 

for positive x. The parameter ν is called the degrees 

of freedom. 

Weibull: f(x) = (γ/β) xγ-1 exp(- xγ/β) for positive x. 

The parameter γ is the shape and β is the scale. 

Double exponential: f(x) = exp(-|x-μ|/σ) / 2σ for all 

x. The parameter μ is the location and mean; σ is 

the scale. 

5. RELATIONSHIPS 

In all statements about two random 

variables, the random variables are implicitly 

independent. 

Geometric / negative binomial: If each Xi is 

geometric random variable with probability of 

success p than the sum of n Xi's is a negative 

binomial random variable with parameters n and p. 

Negative binomial / geometric: A negative 

binomial distribution with r = 1 is a geometric 

distribution. 

Negative binomial / Poisson: If X has a negative 

binomial random variable with r large, p near 1, 

and r(1-p) = λ, then FX ≈ FY where Y is a Poisson 

random variable with mean λ. 
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Beta-binomial / discrete uniform: A beta-binomial 

(n, 1, 1) random variable is a discrete uniform 

random variable over the values 0 ... n.  

Beta-binomial / binomial: Let X be a beta-binomial 

random variable with parameters (n, α, β). Let p = 

α/(α + β) and suppose α + β is large. If Y is a 

binomial(n, p) random variable then FX ≈ FY.  

Hypergeometric / binomial: The difference 

between a hypergeometric distribution and a 

binomial distribution is the difference between 

sampling without replacement and sampling with 

replacement. As the population size increases 

relative to the sample size, the difference becomes 

negligible.  

Geometric / geometric: If X1 and X2 are geometric 

random variables with probability of success p1 and 

p2 respectively, then min(X1, X2) is a geometric 

random variable with probability of success p = p1 

+ p2 - p1 p2. The relationship is simpler in terms of 

failure probabilities: q = q1 q2.  

Poisson / Poisson: If X1 and X2 are Poisson 

random variables with means μ1 and μ2 

respectively, then X1 + X2 is a Poisson random 

variable with mean μ1 + μ2. 

Binomial / Poisson: If X is a binomial(n, p) random 

variable and Y is a Poisson(np) distribution then 

P(X = n) ≈ P(Y = n) if n is large and np is small.  

Binomial / Bernoulli: If X is a binomial(n, p) 

random variable with n = 1, X is a Bernoulli(p) 

random variable.  

Bernoulli / Binomial: The sum of n Bernoulli(p) 

random variables is a binomial(n, p) random 

variable.  

Poisson / normal: If X is a Poisson random 

variable with large mean and Y is a normal 

distribution with the same mean and variance as X, 

then for integers j and k, P(j ≤ X ≤ k) ≈ P(j - 1/2 ≤ 

Y ≤ k + 1/2).  

Binomial / normal: If X is a binomial(n, p) random 

variable and Y is a normal random variable with 

the same mean and variance as X, i.e. np and np(1-

p), then for integers j and k, P(j ≤ X ≤ k) ≈ P(j - 1/2 

≤ Y ≤ k + 1/2). The approximation is better when p 

≈ 0.5 and when n is large.  

Lognormal / lognormal: If X1 and X2 are lognormal 

random variables with parameters (μ1, σ1
2) and (μ2, 

σ2
2) respectively, then X1 X2 is a lognormal random 

variable with parameters (μ1 + μ2, σ1
2 + σ2

2).  

Normal / lognormal: If X is a normal (μ, σ2) 

random variable then eX is a lognormal (μ, σ2) 

random variable. Conversely, if X is a lognormal 

(μ, σ2) random variable then log X is a normal (μ, 

σ2) random variable.  

Beta / normal: If X is a beta random variable with 

parameters α and β equal and large, FX ≈ FY where 

Y is a normal random variable with the same mean 

and variance as X, i.e. mean α/(α + β) and variance 

αβ/((α+β)2(α + β + 1)).  

Normal / standard normal: If X is a normal(μ, σ2) 

random variable then (X - μ)/σ is a standard normal 

random variable. Conversely, If X is a normal(0,1) 

random variable then σ X + μ is a normal (μ, σ2) 

random variable.  

Normal / normal: If X1 is a normal (μ1, σ1
2) random 

variable and X2 is a normal (μ2, σ2
2) random 

variable, then X1 + X2 is a normal (μ1 + μ2, σ1
2 + 

σ2
2) random variable.  

Gamma / normal: If X is a gamma(α, β) random 

variable and Y is a normal random variable with 

the same mean and variance as X, then FX ≈ FY if 

the shape parameter α is large relative to the scale 

parameter β.  

Gamma / beta: If X1 is gamma(α1, 1) random 

variable and X2 is a gamma (α2, 1) random variable 

then X1/(X1 + X2) is a beta(α1, α2) random variable. 

More generally, if X1 is gamma(α1, β1) random 

variable and X2 is gamma(α2, β2) random variable 

then β2 X1/(β2 X1 + β1 X2) is a beta(α1, α2) random 

variable.  

Beta / uniform: A beta random variable with 

parameters α = β = 1 is a uniform random variable.  

Chi-squared / chi-squared: If X1 and X2 are chi-

squared random variables with ν1 and ν2 degrees of 
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freedom respectively, then X1 + X2 is a chi-squared 

random variable with ν1 + ν2 degrees of freedom. 

Standard normal / chi-squared: The square of a 

standard normal random variable has a chi-squared 

distribution with one degree of freedom. The sum 

of the squares of n standard normal random 

variables is has a chi-squared distribution with n 

degrees of freedom. 

Gamma / chi-squared: If X is a gamma (α, β) 

random variable with α = ν/2 and β = 2, then X is a 

chi-squared random variable with ν degrees of 

freedom. 

Cauchy / standard normal: If X and Y are standard 

normal random variables, X/Y is a Cauchy(0,1) 

random variable. 

Student t / standard normal: If X is a t random 

variable with a large number of degrees of freedom 

ν then FX ≈ FY where Y is a standard normal 

random variable.  

Snedecor F / chi-squared: If X is an F(ν, ω) 

random variable with ω large, then ν X is 

approximately distributed as a chi-squared random 

variable with ν degrees of freedom. 

Chi-squared / Snedecor F: If X1 and X2 are chi-

squared random variables with ν1 and ν2 degrees of 

freedom respectively, then (X1/ν1)/(X2/ν2) is an 

F(ν1, ν2) random variable. 

Chi-squared / exponential: A chi-squared 

distribution with 2 degrees of freedom is an 

exponential distribution with mean 2. 

Exponential / chi-squared: An exponential random 

variable with mean 2 is a chi-squared random 

variable with two degrees of freedom.  

Gamma / exponential: The sum of n exponential(β) 

random variables is a gamma(n, β) random 

variable. 

Exponential / gamma: A gamma distribution with 

shape parameter α = 1 and scale parameter β is an 

exponential(β) distribution. 

Exponential / uniform: If X is an exponential 

random variable with mean λ, then exp(-X/λ) is a 

uniform random variable. More generally, sticking 

any random variable into its CDF yields a uniform 

random variable.  

Uniform / exponential: If X is a uniform random 

variable, -λ log X is an exponential random 

variable with mean λ. More generally, applying the 

inverse CDF of any random variable X to a 

uniform random variable creates a variable with the 

same distribution as X. 

Cauchy reciprocal: If X is a Cauchy (μ, σ) random 

variable, then 1/X is a Cauchy (μ/c, σ/c) random 

variable where c = μ2 + σ2. 

Cauchy sum: If X1 is a Cauchy (μ1, σ1) random 

variable and X2 is a Cauchy (μ2, σ2), then X1 + X2 

is a Cauchy (μ1 + μ2, σ1 + σ2) random variable.  

Student t / Cauchy: A random variable with a t 

distribution with one degree of freedom is a 

Cauchy(0,1) random variable. 

Student t / Snedecor F: If X is a t random variable 

with ν degree of freedom, then X2 is an F(1,ν) 

random variable. 

Snedecor F / Snedecor F: If X is an F(ν1, ν2) 

random variable then 1/X is an F(ν2, ν1) random 

variable. 

Exponential / Exponential: If X1 and X2 are 

exponential random variables with mean μ1 and μ2 

respectively, then min(X1, X2) is an exponential 

random variable with mean μ1 μ2/(μ1 + μ2). 

Exponential / Weibull: If X is an exponential 

random variable with mean β, then X1/γ is a 

Weibull(γ, β) random variable. 

Weibull / Exponential: If X is a Weibull(1, β) 

random variable, X is an exponential random 

variable with mean β. 

Exponential / Double exponential: If X and Y are 

exponential random variables with mean μ, then X-

Y is a double exponential random variable with 

mean 0 and scale μ 
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Double exponential / exponential: If X is a double 

exponential random variable with mean 0 and scale 

λ, then |X| is an exponential random variable with 

mean λ. 

6. USE OF ICT IN ESTABLISHIG 

     RELATIONSHIP 

 

Most of the distributions occurring in 

practice can be approximated by Normal 

distribution. More over sampling distributions tend 

to normality for large samples. 

For example, If X ~ Poisson(λ) with λ large then X 

is well approximated by a normal distribution and 

how large does λ have to be? This can be shown 

diagrammatically through 

MATLAB/MATHEMATICA 

 
 

       Fig. 1 Poisson approaches to Normal  

 

7. CONCLUSIONS 

 

By drawing the random samples from 

Poisson distribution and changing the values of the 

parameter λ such as 1, 4 and10 the shape and 

location of the distribution can be changed. 

Therefore ICT enabled teaching gives us an 

opportunity to study how the approximation to the 

Normal distribution changes when we alter the 

parameter of the Poisson distribution. In a similar 

approach one can demonstrate the inter relationship 

of various distributions. 
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